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Abstract. Indexing is critical for the performance of automated first-
order theorem provers. We introduce fingerprint indexing, a non-perfect
indexing technique that is based on short, constant length vectors of
samples of term positions (“fingerprints”) organized in a trie. Fingerprint
indexing supports both matching and unification as retrieval relations.
The algorithms are simple, the indices are small, and performance is very
good in practice.
We have implemented fingerprint indexing in the equational theorem
prover E, where it is used for backwards rewriting and superposition. We
demonstrate the performance of the index both in relative and absolute
terms using large-scale profiling.

1 Introduction

Saturating theorem provers based on resolution or superposition are among the
most powerful ATP systems for first-order logic. Well-known examples include
Vampire [6], SPASS [14] and E [8, 10]. These systems work in a refutational
setting. The state of the proof search is represented by a set of clauses. It is
manipulated using inference rules, with generating rules adding new clauses,
and simplification rules removing or modifying clauses. The proof search ends
successfully if the empty clause can be derived, making the contradiction between
axioms and negated hypothesis explicit.

While some rules operate on individual clauses, the most important inferences
(resolution and paramodulation/superposition) and simplifications (rewriting
and subsumption) use two or more premises—usually a main premise and one
or more additional side premises. For completeness, it is critical that all non-
redundant inferences are eventually performed. Similarly, search performance is
usually much improved if as many simplifications as possible take place. This
requires the system to find potential inference partners for a given clause in the
potentially large set of clauses representing the search space.

Many early systems relied on simple sequential search through all possibilities
for this. However, it soon became obvious that this approach is very expensive
for large proof states. The performance of deduction systems can be improved if
this sequential search is replaced by a more efficient mechanism, namely indexing



of potential inference partners. An index, in this context, is a data structure with
associated algorithms that allows the efficient retrieval of terms or clauses that
are in a given retrieval relation with a query from the indexed set of clauses.
Overviews of many indexing techniques can be found in [2] and [11].

Most early proof problems for theorem provers have been carefully hand-
crafted, and contain no extraneous symbols or axioms. However, this situation
has changed profoundly over time. Recent releases of the TPTP problem li-
brary [13] contain many real application problems that include thousands to
millions of clauses and formulas, either from a large, general knowledge base, or
as part of an automatically generated problem. While very few of these axioms
are needed for proving any given conjecture, they all are part of the proof state.
As a result, the number of terms has grown, but the likelihood of any two terms
being suitable for an inference has dropped. Thus, efficient indexing has become
even more important for performance on relevant problems in recent years.

E has featured (perfect) discrimination tree indexing [4] for forward unit
rewriting since version 0.1, published in 1998. It added feature vector indexing for
subsumption and subsumption resolution (called contextual literal cutting in E’s
equational setting) in version 0.8. However, until recently it did not implement
any indexing for backward simplification (rewriting of processed clauses by newly
derived unit clauses) or the main generating inference (superposition, a version
of paramodulation restricted by term orderings).

While indexing is concerned with finding potential partners among clauses,
most indexing techniques index (first-order) terms, and are then lifted to (occur-
rences of terms in) clauses. One exception to this is feature vector indexing [9], a
technique for finding candidate clauses for subsumption. Feature vector indexing
is a non-perfect technique (i.e. not every returned candidate will actually sub-
sume or be subsumed by the query), but it has a very simple structure, easy and
efficiently implementable algorithms, and shows good performance in practice.

In this paper, we present fingerprint indexing, a new term indexing tech-
nique that can be seen as a generalization of top symbol hashing. It shares the
basic structure of feature vector indexing (indexed objects are represented by
finite-length vectors organized in a trie), and combines it with ideas from co-
ordinate and path indexing [12, 4, 1] (values in the index vectors represent the
occurrence of symbols at certain positions in terms). The resulting index can
be used for retrieving candidate terms unifiable with a query term, matching a
query term, or being matched by a query term. The index data structure has
very low memory use, and all operations for maintenance and candidate retrieval
are fast in practice. Variants of fingerprint indexing have been incorporated into
E for backwards simplification and superposition, with generally positive results.

The remainder of this paper describes the ideas behind, and performance
of, fingerprint indexing. We begin by introducing the necessary notions of first-
order logic with equality. In the next section, we define fingerprint samples,
fingerprints, and fingerprint indexing.

Section 5 demonstrates the performance of fingerprint indexing by analyzing
data from thousands of test problems solved by a version of E instrumented to



allow large scale profiling of the indexing and general superposition algorithms,
comparing fingerprint indexing and non-perfect discrimination tree indexing. We
conclude with a summary and some notes on future work.

2 Terminology

We use standard terminology for first-order clausal logic. A signature consists
of a finite set F of function symbols with associated arities. We write f |n to
indicate that f has arity n ∈ N0. We use a, b, c, d, e for constants (elements of
F with arity 0) and f, g, h, j for non-constant function symbols, possibly with
subscripted indices. We assume an enumerable set V of variables disjoint from
F , typically denoted by x, y, z, x0, . . ., or by upper-case X0,X1 if represented in
TPTP syntax. The set Term(F ,V ) of terms over F and V is the smallest set
such that (i) x ∈ Term(F ,V ) for all x ∈ V and (ii) if f |n ∈ F and t1, . . . , tn ∈
Term(F ,V ), then f(t1, . . . , tn) ∈ Term(F ,V ). In that case, the ti are called the
direct subterms of f(t1, . . . , tn). A subterm of t ∈ Term(F ,V ) is either t itself,
or, recursively, a subterm of a direct subterm of t. A proper subterm of t is a
subterm t′ of t that is different from t. We usually omit the parentheses from
constant function symbols, as e.g. in f(g(x), a).

An (equational) atom1 is an unordered pair of terms, written as s ' t. A
literal is either an atom, or a negated atom, written as s 6' t. If we want to write
about arbitrary literals without specifying polarity, we use s'̇t, or, in less precise
way, l, l1, l2, . . .. Note that ' is symmetric in this notation.

A clause is a multi-set of literals, interpreted as an implicitly universally
quantified disjunction, and usually written as l1 ∨ l2 . . .∨ ln. Please note that in
this notation, the ∨ operator is associative and commutative. The empty clause
is written as �, and the set of all clauses as Clauses(F ,V ). A formula in clause
normal form is a multi-set of clauses, interpreted as a conjunction.

A substitution is a mapping σ : V → Term(F ,V ) with the property that
Dom(σ) = {x ∈ V | σ(x) 6= x} is finite. It is extended to a function on terms,
atoms, literals and clauses in the obvious way. If σ and τ are two substitutions, σ
is called more general than τ , if there exists a substitution σ′ such that τ = σ◦σ′.
It is called strictly more general, if σ is more general than τ , but not vice versa.

A matcher from a term s to another term t is a substitution σ such that
σ(s) ≡ t. A unifier of two terms s and t a substitution σ such that σ(s) ≡ σ(t).
If s and t are unifiable, a most general unifier (mgu) for them exists, and is
unique up to variable renaming.

We use a slightly expanded definitions for positions in terms, allowing posi-
tions that do not lie in a term: A (potential) position is a sequence p ∈ N∗ over
natural numbers. We write a position of length (or depth) n as p = i1.i2 . . . in,
and use ε to denote the empty position. The set of positions in a term, pos(t) is
defined as follows: If t ≡ x ∈ V , then pos(t) = {ε}. Otherwise t ≡ f(t1, . . . , tn).

1 For our current discussion, the non-equational case is a simple special case and can
be handled by encoding non-equational atoms as equalities with a reserved constant
$true.



In this case pos (t) = {ε} ∪ {i.p | 1 ≤ i ≤ n, p ∈ pos(ti)}. The subterm of t
at position p ∈ pos(t) is defined recursively: if p = ε, then t|p = t. Otherwise,
p ≡ i.p′ and t ≡ f(t1, . . . , tn). In that case, tp = ti|p′ . The top symbol of x ∈ V
is top(x) = x and the top symbol of f(t1, . . . , tn) is top(f(t1, . . . , tn)) = f . We
write s[p ← t] to denote the term constructed from s by replacing the subterm
s|p with t.

Positions can be extended to literals (selecting a term in a literal) and clauses
(selecting a term in a literal in a clause) easily if we assume an arbitrary, but
fixed ordering of terms in literals and literals in clauses2. In this case, a position
contains two extra elements, one selecting the literal, the second the side of the
(equational) literal.

Modern saturating calculi are instantiated with a term ordering, a partial
ordering fulfilling certain properties (well-foundedness, monotonicity, compati-
bility with substitutions). This ordering is lifted to literals and clauses. Gener-
ating inferences can be restricted to (subterms of) maximal terms of maximal
literals, and to inferences that generate at least potentially smaller consequences.
Simplification allows the replacement of clauses with equivalent smaller clauses.

The most frequent generating inference used in a saturating theorem prover
is paramodulation or its ordering-restricted variant superposition. In E, superpo-
sition is typically responsible for >> 95% of all generated clauses. The most im-
portant multi-clause simplifications are subsumption (which allows the removal
of less general clauses if a more general clause is present) and rewriting.

In a typical saturating theorem prover, proof search is implemented with the
given-clause algorithm. In this algorithm, the proof state is represented by two
sets of clauses, the processed clauses P and the unprocessed clauses U . Initially,
all clauses are unprocessed. The algorithm repeatedly picks one clause g from
U , and performs all generating inferences where g is at least one premise, and
all other premises are from P . The newly generated clauses are added to U ,
the given clause to P . In the DISCOUNT variant of the given-clause algorithm
implemented in E, simplification is performed on g, and on newly generated
clauses with side premises from P . Simplification of P is done with g, and clauses
so simplified are removed from P and treated like newly generated clauses.

3 Fingerprint Indexing

The aim of fingerprint indexing is to organize the potentially rewritable subterms
and the potential paramodulation positions in the proof state in a data structure
that allows efficient retrieval of either all subterms that are matched by the left-
hand side of a rewrite rule, or that can be unified with a potential partner term
for paramodulation.

We will first introduce fingerprints of terms, and show that the compatibility
of the respective fingerprints is a required condition for the existence of a unifier
(or matcher) between two terms. The basic idea is that the application of a

2 This is automatically given in most implementations, which represent literals as
terms or ordered pairs, and clauses as lists.



substitution (in this case, a unifier or a matcher) never removes an existing
position from a term, nor will it change an existing function symbol in a term.
We can thus sample a term at a fixed number of positions, and use the collected
information to find potentially unifiable or matching terms.

Consider a potential position (i.e. an arbitrary sequence of integers) p and a
term t (as a running example, assume t = g(f(x, a)). Then the following cases
are possible:

1. p is a position in t and t|p is a variable (e.g. p = 1.1)
2. p is a position in t and t|p is a non-variable term (e.g. p = 1.2 or p = ε)
3. p is not a position in t, but there exists an instance σ(t) with p ∈ pos(σ(t))

(e.g. p = 1.1.1.2 with σ = {x 7→ f(a, b))}
4. p is not a position in t or any of its instances (e.g. p = 2.1)

These four cases have different implications when trying to unify two terms.
At the simplest, two terms which, at the same position, have different top func-
tion symbols, cannot possibly be unified. Stated positively, if we search for terms
unifiable with a query term t, and top(t|p) = f , we only need to consider terms
s where top(s|p) can potentially become f .

To formalize this, consider the following definition: Let F ′ = F ] {A,B,N}
(the set of fingerprint feature values for F ). The general fingerprint feature func-
tion is a function gfpf : Term(F ,V )× N∗ → F ′ defined by:

gfpf(t, p) =


A if p ∈ pos(t), t|p ∈ V
top(t|p) if p ∈ pos(t), t|p /∈ V
B if p = q.r, q ∈ pos(t) and t|q ∈ V for some q
N otherwise

A fingerprint feature function is a function fpf : Term(F ,V ) → F ′ defined
by fpf(t) = gfpf(t, p) for a fixed p ∈ N∗.

Now assume two terms, s and t, and a fingerprint feature function fpf. As-
sume u = fpf(s) and v = fpf(t). The values u and v are compatible for unification
if they are marked with a Y in the Unification table of Figure 1. They are com-
patible for matching from s onto t, if they are marked with a Y in the Matching
table in Figure 1. It is easy to show by case distinction that compatibility of the
fingerprint feature values is a necessary condition for unification or matching,
respectively.3

Now assume n ∈ N. A fingerprint function is a function fp : Term(F ,V )→
(F ′)n with the property that πi

n ◦ fp (the projection onto the ith element of the
result) is a fingerprint feature function for all i ∈ {1, . . . , n}. A fingerprint is the
result of the application of a fingerprint function to a term, i.e. a vector of n
elements over F ′. We will in the following assume a fixed fingerprint function fp.

Two fingerprints for s and t are unification-compatible (or compatible for
matching from s onto t) if they are component-wise so compatible.

3 The only slightly unintuitive consideration encountered is the fact that application
of a substitution can not only add positions to a term t, it can also restrict the set of
potential positions in instances of t. As an example, consider f(x). gfpf(f(x), 1.2) =
B, but gfpf(f(g(a)), 1.2) = N.



Unification

f1 f2 A B N

f1 Y N Y Y N

f2 N Y Y Y N

A Y Y Y Y N

B Y Y Y Y Y

N N N N Y Y

Matching

f1 f2 A B N

f1 Y N N N N

f2 N Y N N N

A Y Y Y N N

B Y Y Y Y Y

N N N N N Y

Fig. 1. Fingerprint feature compatibility for unification and matching (down onto
across). Note that f1, f2 stand for arbitrary function symbols, and we implicitly assume
f1 6= f2 here.

Theorem 1. Assume an arbitrary fingerprint function fp. If fp(t1) and fp(t2)
are not unification compatible, then t1 and t2 are not unifiable. If fp(t1) and
fp(t2) are not compatible for matching t1 onto t2, then t1 does not match t2.

Given a fixed fingerprint function, each term has a unique fingerprint, but
many terms share the same one. A fingerprint function defines an equivalence
on Term(F ,V ), and we can use the fingerprints to organize any set of terms
into disjoint subsets, each sharing a fingerprint. If we want to find terms in a
given relation (unifiable or matchable) to a query term, we only need to consider
terms from those subsets for which the query relation holds on the fingerprints.

However, we do not need to linearly compare fingerprints to find unification
or matching candidates. Instead, we combine fingerprints into a fingerprint index.
A fingerprint index is a constant-depth trie over fingerprints that associates the
indexed term sets with the leaves (i.e. end nodes) of the trie.

As an example, consider F = {j|2, f |2, g|1, a|0, b|0, e|0} and fp : Term(F ,V )→
(F ′)3 defined by fp(t) = 〈gfpf(t, ε), gfpf(t, 1), gfpf(t, 2)〉.

Figure 2 shows a fingerprint index for fp and a set of 13 terms stored at 10
leaves.4 When we query the index for terms unifiable with t = j(e, g(X))), we
first compute fp(t) = 〈j, e, g〉. At each node in the tree we follow all branches
labeled with feature values unification-compatible with the corresponding fin-
gerprint value of the query. At the root, only the branch labelled with j has
to be considered. At the next node, branches e and A are compatible. Finally,
three leaves (marked in darker gray), with a total of 4 terms, are unification-
compatible with the query. In this case, all 4 terms found actually are unifiable
with the query. The index made it possible to avoid considering any other term.

Even fairly short fingerprints are sufficient to achieve good performance of
the index. Computing these small fingerprints is computationally cheap, and so
is insertion and removal of fingerprints from the trie.

Since each term has a unique fingerprint, each term is stored at one and only
one leaf in the trie. To find all retrieval candidates, we have to traverse the trie

4 This is the paramodulation-from index (potentially maximal terms from potentially
maximal positive literals) generated by E after 20 iterations of the main loop on the
3rd problem from [3] (a ring with x2 = x is commutative).
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Fig. 2. Example fingerprint index

recursively, collecting candidates from all leaves. Since all terms at a leaf are
compatible with all fingerprints leading to it, and since all terms are represented
at most once in the index, we only need to form the union of the candidate
sets at all matching leaves. This is the major advantage compared to coordinate
indexing, where it is necessary to compute the intersection of all candidate sets
for each coordinate. The same applies for path indexing, where e.g. Vampire
goes to great lengths to optimize this bottleneck [7].

Moreover, since each term has a single fingerprint and is represented only
once in the trie, there are at most as many fingerprints in an index as there are
indexed terms. Thus, memory consumption of the index scales at worst linearly
with the size of the set of indexed terms.

4 Implementation

As stated above, we have implemented fingerprint indexing in our theorem prover
E to speed up superposition and backwards rewriting. For this purpose, we
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Fig. 3. Structure of the fingerprint index for paramodulation

have added three global indices to E, called the backwards-rewriting index, the
paramodulation-from index, and the paramodulation-into index.

The backwards-rewriting index contains all (potentially rewritable) subterms
of processed clauses. Each term is associated with the set of all processed clauses
it occurs in. Given a new unit clause l'r, we find all rewritable clauses by finding
all leaves compatible with the fingerprint of l, try to match l onto each of the
terms t stored at the leaf, and, in the case of success, verify if σ(l) > σ(r). If and
only if this is the case, all clauses associated with the term are rewritable with
the new unit clause (and hence are removed from the set of processed clauses).
Note that in this implementation the (potentially expensive) ordering check only
has to be made once for every t, not once per occurrence t.

For the paramodulation indices, we use a somewhat more complex structure.
Figure 3 visualizes the multi-level structure of the index. The FP-Trie indexes
sets of terms with the same fingerprint. These sets are stored as binary trees of
pointers. For each term, we store a set of clauses in which this term occurs (at
a position potentially compatible with the superposition restrictions). Finally,
with each of these clauses, we store the positions in which the term occurs.

The paramodulation-from index contains all maximal terms of maximal pos-
itive literals in potential side premises. To find all possible paramodulation in-
ferences with a new clause g, we iterate over all subterms in maximal sides of
maximal literals of g, and find the unifiable terms via the index. If the unifi-
cation is successful with mgu σ, we can already test the ordering restrictions
on σ(g). We then iterate over all clauses associated with the term, and over all
positions where the term occurs. For each, we check the ordering restrictions on
the indexed clause, and, in the case of success, construct the paramodulant.



The paramodulation-into index is organized analogously, but contains all
subterms of maximal terms in maximal literals of the indexed clauses. For finding
paramodulants, we only iterate over the maximal terms in maximal positive
literals in g. As above, we can already check ordering restrictions on g as soon as
the unifier is computed, and do not have to repeat this check for every potential
inference with the same term.

5 Experimental results

To measure the performance of fingerprint indexing, we performed a series of
experiments. All tests use problems from the set of 15386 untyped first-order
problems in the TPTP problem library [13], Version 5.2.0. The problems were
not modified in any way.

A direct comparison with other indexing methods is, in principle, desirable.
However, it has a number of drawbacks. E had not originally implemented any
other indexing techniques for paramodulation and backward rewriting, and in-
deed, one of the motivations for developing lightweight techniques like feature-
vector indexing and fingerprint indexing is to avoid the more complex implemen-
tation of competing techniques. Secondly, and more significantly, performance
of indexing is very much also a quality-of-implementation issue. Thus, a direct
comparison is not as universally useful as it would seem.

We have implemented (non-perfect) discrimination tree indexing [4] as a ref-
erence benchmark. In addition, we measure the performance of the index in
absolute terms. For this purpose, we have instrumented the prover in a number
of ways. In particular, we have added profiling code that enables us to mea-
sure and record the time spent in the relevant part of the program without the
overhead and complexity of using a standard profiler. This allows us to fully au-
tomatically determine the time spent in index maintenance and unification for
a large set of test problems, and and hence give an upper limit to the maximum
improvements possible using any indexing technique.

5.1 Instrumenting the prover

We have added a generic profiling mechanism to E. Profiling is enabled by in-
strumenting the source code. The system can maintain an arbitrary number of
profiling points. The system computes (at microsecond resolution) the difference
between the time profiled code is entered and left. The times for each profiled
segment are summed over the life time of the process. We have added timers mea-
suring the time spent for the whole prover, the main saturation loop (excluding
preprocessing), paramodulation/superposition, unification, backward rewriting,
and index maintenance for paramodulation and rewriting indices.

As for all portable profiling solutions, the times measured are only statisti-
cally valid. Many functions have run times much shorter than the microsecond
resolution of the UNIX system clock. However, over sufficiently many calls, the
average values become increasingly more reliable. Other sources of noise include



the exact scheduling of instructions on modern deeply pipelined multi-core pro-
cessors with out-of-order issue, cache-contention, and memory access. Hence even
the overall times measured can vary slightly from run to run. We perform tests
on thousands of problems, with many thousand calls to small profiled functions
for each problem. Thus, these effects largely average out. However, performance
for individual, especially short-running tests, can show the effects of this noise.

5.2 Parameters

In first-order proof search, even small changes can influence the course of the
proof search significantly. Since indexing affects both the order in which clauses
are generated and the internal memory layout of the process, it is not always
guaranteed that the system performs the same search in the different cases. To
minimize the effect, we use a strategy that uses only a single simple heuristic
evaluation for clauses, and impose a total order on newly generated clauses5.
Moreover, for quantitative analysis of the run times, we only use cases where
the prover has performed the same number of iterations of the main loop, and
has the same number of processed and unprocessed clauses at termination time.
These three indicators give a high likelihood that the proof search followed very
similar lines for the indexed and non-indexed case.

This resulted in 5824 problems used for comparison. Additionally restricting
the problem sets only to problems with non-trivial proof search (arbitrarily de-
fined as having at least 1000 iterations of the main loop) did not significantly
affect the results. Hence we report the result for all 5824 problems showing
similar search behavior for all indexing strategies.

Tests were performed, with a number of different fingerprint functions, and
with non-perfect discrimination tree indexing. discrimination tree indexing [4]
as a benchmark. Table 1 lists the different variants.

All tests were run on the University of Miami Pegasus cluster. The cluster is
running Linux with the 2.6.18-164.el5 SMP Kernel in 64 bit mode. Each node
is equipped with 8 Intel Xeon CPUs, model L5420, running at 2.4 GHz, and 16
GB of RAM. Test runs were done with a CPU time limit of 300 seconds per job,
with 8 jobs scheduled per node. The data and the version of the prover used for
the test runs are archived at http://www.eprover.eu/E-eu/FPIndexing.html.

5.3 Results

Table 2 shows the result of the time measurements, summed over all 5824 prob-
lems. “Run time” is the total run time of the process, including preprocessing

5 The exact options given to the prover were
--delete-bad-limit=512000000 --split-clauses=4 --split-reuse-defs

--forward-context-sr --destructive-er-aggressive --presat-simplify

--prefer-initial-clauses -tKBO6 -Ginvfreqconjmax -winvfreqrank -c1 -F1

-WSelectMaxLComplexAvoidPosPred -H’(1*Clauseweight(ConstPrio,1,1,1))’

--detsort-new --fp-index=XXX. We used a modified version of E 1.4.



Name Positions sampled Remark

NoIdx N/A No indexing
FP0 N/A Fingerprint of lengths 0
FP0FP (ε) Pseudo-fingerprint emulating opti-

mizations in the unindexed version
FP1 ε Effectively top-symbol hashing
FP2 ε, 1
FP3D ε, 1, 1.1
FP3W ε, 1, 2
FP4D ε, 1, 1.1, 1.1.1
FP4M ε, 1, 2, 1.1
FP4W ε, 1, 2, 3
FP5M ε, 1, 2, 3, 1.1
FP6M ε, 1, 2, 3, 1.1, 1.2
FP7 ε, 1, 2, 1.1, 1.2, 2.1, 2.2
FP7M ε, 1, 2, 3, 1.1, 4, 1.2
FP8X2 ε, 1, 2, 3, 4, 1.1, 1.2, 1.3, 2.1, 2.2,

2.3, 3.1, 3.2, 3.3, 1.1.1, 2.1.1
Samples 16 positions.

NPDT N/A (all) Non-perfect discrimination trees
Table 1. Fingerprint functions used in the evaluation

Index Run time Sat time PM time PMI time MGU time BR time BRI time

NoIdx 16062.392 14078.300 8980.320 0.000 2545.080 2280.250 0.000
FP0 16644.127 14835.130 9904.120 26.380 4360.330 1846.280 41.440
FP0FP 9581.606 8211.010 3633.590 27.950 1322.530 1071.210 42.030
FP1 7006.758 6145.870 1816.100 25.710 450.760 379.570 40.150
FP2 6200.043 5556.330 1345.440 28.900 199.600 104.340 43.300
FP3D 6107.780 5463.240 1266.820 31.410 150.880 91.430 46.040
FP3W 6104.037 5477.280 1264.720 32.970 149.070 75.940 46.630
FP4D 6125.753 5478.900 1253.260 32.530 138.680 89.620 50.110
FP4M 6050.617 5423.820 1197.720 33.640 109.870 64.740 49.620
FP4W 6126.202 5496.800 1261.510 33.390 149.120 75.770 50.240
FP5M 6088.364 5455.180 1203.240 38.250 107.860 65.630 53.520
FP6M 6000.177 5385.810 1181.710 38.240 99.110 39.010 55.660
FP7M 6063.286 5445.650 1189.510 39.990 99.600 38.970 58.130
FP7 6022.196 5404.150 1179.250 41.880 95.880 38.400 57.610
FP8X2 6066.482 5429.390 1193.820 56.430 88.580 37.710 77.400
NPDT 6082.246 5434.760 1184.750 64.910 83.110 33.200 79.910

Table 2. CPU times for different parts of the proof process (in seconds)

(which, with the chosen parameters, also includes a complete interreduction of
the axioms with significant backwards rewriting). “Sat time” is the time spent in
the main saturation loop, excluding preprocessing. “PM time” is the total time
for paramodulation/superposition, including the search for inference partners,
unification, ordering tests, and result assembly. Since the unification and, in the
case of success, further operations, are the same for all indices, the differences



in timing represent differences for the complete term retrieval for unifiers. “PMI
time” is the time spent maintaining the paramodulation indices. “MGU time”
is the time spent in actual unification. “BR time” and “BRI time” are the times
used for backwards-rewriting and backward-rewrite index maintenance.

If we consider the total time, we can see that all proper indexing functions
deliver a significant performance gain. Comparing the unindexed version with the
FP6M index, total run time decreases by more than 60%. If we compare the first
(unindexed) and the third row (indexed using a pseudo-fingerprint equivalent to
some optimizations used in the non-indexed implementation), we can see that
even here the unification time is cut in half.Moreover, the indexed variant gains
a further 5000 seconds in paramodulation. The first effect shows the effect of
performing unification only once per term, not once per term occurrence. The
second one shows the even more significant effect of performing the ordering
checks of superposition on the query clause only once, when the instance is
generated, and not repeatedly for every inference pair.

The time spent for unification itself has been reduced by a factor of about
25 using the FP6M index. With this index, the total time for unification-related
code (i.e. index maintenance and unification) amounts to less than 2.5% of the
total run time.

Comparing the times for FP6M with the times for discrimination tree in-
dexing, we see that overall fingerprint indexing outperforms discrimination tree
indexing, if not by a large margin. Time for actual unification is slightly lower
for discrimination tree indexing, however, because of the indexes greater size,
index maintenance and index traversal for retrieval are more expensive than for
fingerprint indexing.

Table 3 shows the success of fingerprint indexing in delivering good unifica-
tion and matching candidates. Note that in the non-indexed case, every distinct
occurrence of a term will potentially be tried for unification and matching. For
all indices, terms are represented at most once in the index. Thus, the number of
successful unifications is lower, although the number of successful inferences is
the same. The fact that all indexed strategies have exactly the same number of
successful unifications and matches is another strong indicator that the prover
executed the same proof search for each different strategy.

In the unindexed case, only about 2% of all unification attempts are suc-
cessful. Even for short fingerprints, the ratio increases significantly, and for the
FP6M strategy, more 60% of all candidate terms do unify. This ratio increases
further as fingerprints become longer. For non-perfect discrimination trees, it
reaches about 75%.

We see an even stronger improvement for backwards rewriting. Here, the
time for the operation itself drops more than 58-fold. Time for index main-
tenance is of the same order of magnitude as time for matching. This is not
surprising, since the backwards-rewrite index needs to store all subterms, while
the paramodulation indices only have to store potential inference terms. Taking
index maintenance into account, the total time for backward rewriting improved
by a factor of about 25. The time spent for backwards-rewriting and index main-



Index Unification Unification Unification BR match BR match BR Match
attempts successes succ. rate attempts successes succ. rate

NoIdx 9 540 075 320 192 664 262 0.020 9 658 509 219 156 698 0.000
FP0 17 211 802 533 90 278 056 0.005 9 586 440 451 144 337 0.000
FP0FP 4 738 930 478 90 278 056 0.019 5 834 612 493 144 337 0.000
FP1 1 163 944 204 90 278 056 0.078 2 285 521 238 144 337 0.000
FP2 383 514 084 90 278 056 0.235 367 303 091 144 337 0.000
FP3D 280 445 270 90 278 056 0.322 271 434 503 144 337 0.001
FP3W 243 476 462 90 278 056 0.371 236 615 956 144 337 0.001
FP4D 265 042 869 90 278 056 0.341 252 155 842 144 337 0.001
FP4M 165 525 195 90 278 056 0.545 165 095 233 144 337 0.001
FP4W 239 979 381 90 278 056 0.376 235 742 889 144 337 0.001
FP5M 162 238 728 90 278 056 0.556 164 298 660 144 337 0.001
FP6M 145 567 515 90 278 056 0.620 53 841 789 144 337 0.003
FP7M 145 509 054 90 278 056 0.620 53 745 992 144 337 0.003
FP7 140 261 300 90 278 056 0.644 46 773 678 144 337 0.003
FP8X2 126 341 321 90 278 056 0.715 33 611 032 144 337 0.004
NPDT 118 072 345 90 278 056 0.765 561 473 144 337 0.257

Table 3. Retrieval attempts and successes

 1

 10

 100

 1  10  100

Fi
ng

er
pr

in
t I

nd
ex

in
g

Conventional

Fig. 4. Scatter plot of unindexed and FP6M total run times (in seconds)

tenance for FP6M is only 1.6% of the total time, down from about 15% for the
non-indexed version.

We can observe that discrimination tree indexing does further improve the
times for actual term retrieval, but performs worse overall due to the higher cost
of index maintenance.
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Fig. 5. Scatter plot of discrimination tree and FP6M total run times (in seconds)

Figure 4 shows a scatter plot of run times for the sequential search imple-
mentation and FP6M fingerprint indexing. Only problems with a run time of at
least one second are included. Please note the double logarithmic scale. For the
vast majority of problems, the indexed version is significantly, and often dra-
matically, faster, while there are no problems for which the conventional version
is more than marginally faster.

Figure 5 compares FP6M and discrimination tree indexing. We can see that
for most problems, performance is nearly the same, but that for a few prob-
lems, discrimination tree indexing is distinctly slower. There are no cases where
fingerprint indexing is significantly slower.

6 Conclusion

In this paper, we have introduced fingerprint indexing, a lightweight indexing
technique that is easy to implement, has a small memory footprint, and shows
excellent performance in practice. It is particularly effective for typical applica-
tion problems, with large signatures and large numbers of axioms. Fingerprint
indexing has made E much more competitive on this kind of proof problems.

In the future, we will further investigate the influence of different fingerprint
functions, and evaluate if further gains can be made by automatically generating
a good fingerprint function based on the signature.

While the experiments show that fingerprint indexing has the potential to
reduce the CPU cost of the indexed operations to nearly insignificant levels, we



are still interested in a direct comparison with additional indexing techniques in
a synthetic setting like the one discussed in [5].
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