
Fingerprint Indexing for Paramodulation and
Rewriting

Stephan Schulz

Institut für Informatik, Technische Universität München,
D-80290 München, Germany, schulz@eprover.org

Abstract. Indexing is critical for the performance of first-order theorem
provers. We introduce fingerprint indexing, a non-perfect indexing tech-
nique that is based on short, constant length vectors of samples of term
positions (“fingerprints”) organized in a trie. Fingerprint indexing sup-
ports matching and unification as retrieval relations. The algorithms are
simple, the indices are small, and performance is very good in practice.
We demonstrate the performance of the index both in relative and ab-
solute terms using large-scale profiling.

1 Introduction

Saturating theorem provers like Vampire [3] and E [5] are among the most pow-
erful ATP systems for first-order logic. These systems work in a refutational
setting. The state of the proof search is represented by a set of clauses. It is ma-
nipulated using inference rules. The most important inferences (resolution and
paramodulation/superposition) and simplifications (rewriting and subsumption)
use two or more premises—usually a main premise and one or more additional
side premises. This requires the system to find potential inference partners for a
given clause in the potentially large set of clauses representing the search state.

The performance can be improved if inference partners are not found by
sequential search, but via an index. An index, in this context, is a data structure
with associated algorithms that allows the efficient retrieval of terms or clauses
from the indexed set that are in a given retrieval relation with a query.

E has featured (perfect) discrimination tree indexing [2] for forward rewriting
since version 0.1. It added feature vector indexing [6] for subsumption in version
0.8. In this paper, we present fingerprint indexing, a new, non-perfect term in-
dexing technique that can be seen as a generalization of top symbol hashing. It
shares the basic structure of feature vector indexing (indexed objects are repre-
sented by finite-length vectors organized in a trie), and combines it with ideas
from coordinate and path indexing [7, 2, 1] (values in the index vectors represent
the occurrence of symbols at certain positions in terms). The index can be used
for retrieving candidate terms unifiable with a query term, matching a query
term, or being matched by a query term. The index data structure has very low
memory use, and all operations for maintenance and candidate retrieval are fast
in practice. Variants of fingerprint indexing have been incorporated into E for
backwards simplification and superposition, with generally positive results.

2 Background

We use standard terminology for first-order logic. A signature consists of a finite
set F of function symbols with associated arities. We write f |n to indicate that
f has arity n ∈ N0. We assume an enumerable set V of variables disjoint from
F , typically denoted by x, y, z, x0, . . ., or by upper-case X0,X1 if represented in
TPTP syntax. Terms, subterms, literals and clauses are defined as usual.

A substitution is a mapping σ : V → Term(F ,V) with the property that
Dom(σ) = {x ∈ V | σ(x) 6= x} is finite. It can be extended to terms, atoms,
literals and clauses. A matcher from a term s to another term t is a substitution
σ such that σ(s) ≡ t. A unifier of two terms s and t a substitution σ such that
σ(s) ≡ σ(t). If s and t are unifiable, a most general unifier (mgu) for them exists,
and is unique up to variable renaming.

A (potential) position in a term is a sequence p ∈ N∗ over natural numbers.
We use ε to denote the empty position. The set of positions in a term, pos(t) is
defined as follows: If t ≡ x ∈ V , then pos(t) = {ε}. Otherwise t ≡ f(t1, . . . , tn).
In this case pos (t) = {ε} ∪ {i.p | 1 ≤ i ≤ n, p ∈ pos(ti)}. The subterm of t
at position p ∈ pos(t) is defined recursively: if p = ε, then t|p = t. Otherwise,
p ≡ i.p′ and t ≡ f(t1, . . . , tn). In that case, tp = ti|p′ . The top symbol of x ∈ V
is top(x) = x and the top symbol of f(t1, . . . , tn) is top(f(t1, . . . , tn)) = f .

Positions can be extended to literals (selecting a term in a literal) and clauses
(selecting a term in a literal in a clause) easily if we assume an arbitrary, but
fixed ordering of terms in literals and literals in clauses.

Modern saturating calculi are instantiated with a term ordering. This or-
dering is lifted to literals and clauses. Generating inferences can be restricted
to (subterms of) maximal terms of maximal literals. Simplification allows the
replacement of clauses with equivalent smaller clauses.

3 Fingerprint Indexing

We will now introduce fingerprints of terms, and show that the compatibility of
the respective fingerprints is a required condition for the existence of a unifier
(or matcher) between two terms. The basic idea is that the application of a
substitution never removes an existing position from a term, nor will it change
an existing function symbol in a term.

Consider a potential position p and a term t (as a running example, assume
t = g(f(x, a)). Then the following cases are possible:

1. p is a position in t and t|p is a variable (e.g. p = 1.1)
2. p is a position in t and t|p is a non-variable term (e.g. p = 1.2 or p = ε)
3. p is not a position in t, but there exists an instance σ(t) with p ∈ pos(σ(t))

(e.g. p = 1.1.1.2 with σ = {x 7→ f(a, b))}
4. p is not a position in t or any of its instances (e.g. p = 2.1)

These four cases have different implications for unification. Two terms which,
at the same position, have different function symbols, cannot be unified. Stated

positively, if we search for terms unifiable with a query term t, and top(t|p) = f ,
we only need to consider terms s where top(s|p) can potentially become f .

To formalize this, consider the following definition: Let F ′ = F] {A,B,N}
(the set of fingerprint feature values for F). The general fingerprint feature func-
tion is a function gfpf : Term(F ,V)× N∗ → F ′ defined by:

gfpf(t, p) =

A if p ∈ pos(t), t|p ∈ V
top(t|p) if p ∈ pos(t), t|p /∈ V
B if p = q.r, q ∈ pos(t) and t|q ∈ V for some q
N otherwise

A fingerprint feature function is a function fpf : Term(F ,V) → F ′ defined
by fpf(t) = gfpf(t, p) for a fixed p ∈ N∗.

Now assume two terms, s and t, and a fingerprint feature function fpf. As-
sume u = fpf(s) and v = fpf(t). The values u and v are compatible for unification
if they are marked with a Y in the Unification table of Figure 1. They are com-
patible for matching from s onto t, if they are marked with a Y in the Matching
table in Figure 1. It is easy to show by case distinction that compatibility of the
fingerprint feature values is a necessary condition for unification or matching.

Unification

f1 f2 A B N

f1 Y N Y Y N

f2 N Y Y Y N

A Y Y Y Y N

B Y Y Y Y Y

N N N N Y Y

Matching

f1 f2 A B N

f1 Y N N N N

f2 N Y N N N

A Y Y Y N N

B Y Y Y Y Y

N N N N N Y

Fig. 1. Fingerprint feature compatibility for unification and matching (down onto
across). f1 and f2 are arbitrary but distinct.

Now assume n ∈ N. A fingerprint function is a function fp : Term(F ,V)→
(F ′)n with the property that πi

n ◦ fp (the projection onto the ith element of the
result) is a fingerprint feature function for all i ∈ {1, . . . , n}. A fingerprint is the
result of the application of a fingerprint function to a term, i.e. a vector of n
elements over F ′. We will in the following assume a fixed fingerprint function fp.

Two fingerprints for s and t are unification-compatible (or compatible for
matching from s onto t) if they are component-wise so compatible.

Theorem 1. Assume an arbitrary fingerprint function fp. If fp(t1) and fp(t2)
are not unification compatible, then t1 and t2 are not unifiable. If fp(t1) and
fp(t2) are not compatible for matching t1 onto t2, then t1 does not match t2.

A fingerprint function defines an equivalence on Term(F ,V), and we can use
the fingerprints to organize any set of terms into disjoint subsets, each sharing a
fingerprint. If we want to find terms in a given relation (unifiable or matchable)

Fig. 2. Example fingerprint index

to a query term, we only need to consider terms from those subsets for which
the query relation holds on the fingerprints.

However, we do not need to linearly compare fingerprints to find unifica-
tion or matching candidates. A fingerprint index is a constant-depth trie over
fingerprints that associates the indexed term sets with the leaves of the trie.

As an example, consider F = {j|2, f |2, g|1, a|0, b|0, e|0} and fp : Term(F ,V)→
(F ′)3 defined by fp(t) = 〈gfpf(t, ε), gfpf(t, 1), gfpf(t, 2)〉.

Figure 2 shows a fingerprint index for fp. When we query the index for
terms unifiable with t = j(e, g(X))), we first compute fp(t) = 〈j, e, g〉. At each
node in the tree we follow all branches labeled with feature values unification-
compatible with the corresponding fingerprint value of the query. At the root,
only the branch labelled with j has to be considered. At the next node, branches
e and A are compatible. Finally, three leaves (marked in darker gray), with a
total of 4 terms, are unification-compatible with the query. In this case, all 4
terms found actually are unifiable with the query.

Even fairly short fingerprints are sufficient to achieve good performance of
the index. Computing these small fingerprints is computationally cheap, and so
is insertion and removal of fingerprints from the trie.

Since each term has a unique fingerprint, it is stored at exactly one leaf. To
find all retrieval candidates, we traverse the trie recursively, collecting candidates
from all leaves. Since all terms at a leaf are compatible with all fingerprints
leading to it, and since all terms are represented at most once in the index, we
only need to form the union of the candidate sets at all matching leaves. This
is a major advantage compared to coordinate indexing, where it is necessary

to compute the intersection of candidate sets for each coordinate. The same
applies to path indexing, where e.g. Vampire goes to great lengths to optimize
this bottleneck [4]. Moreover, since each term has a single fingerprint and is
represented only once in the trie, there are at most as many fingerprints in an
index as there are indexed terms. Thus, memory consumption of the index scales
at worst linearly with the number of indexed terms.

4 Implementation

We have implemented fingerprint indexing in our theorem prover E to speed up
superposition and backwards rewriting. For this purpose, we have added three
global indices to E, called the backwards-rewriting index, the paramodulation-
from index, and the paramodulation-into index.

The backwards-rewriting index contains all (potentially rewritable) subterms
of processed clauses. Each term is associated with the set of all processed clauses
it occurs in. Given a new unit clause l'r, we find all rewritable clauses by finding
all leaves compatible with the fingerprint of l, try to match l onto each of the
terms t stored at the leaf, and, in the case of success, verify if σ(l) > σ(r). If and
only if this is the case, all clauses associated with the term are rewritable with
the new unit clause (and hence are removed from the set of processed clauses).
Note that in this implementation the (potentially expensive) ordering check only
has to be made once for every t, not once per occurrence of t.

For the paramodulation indices, we use a somewhat more complex structure.
The FP-Trie indexes sets of terms with the same fingerprint. For each term, we
store a set of clauses in which this term occurs (at a position potentially com-
patible with the superposition restrictions). Finally, with each of these clauses,
we store the positions in which the term occurs. The paramodulation-into index
is organized analogously.

5 Experimental results

To measure the performance of fingerprint indexing, we performed a series of
experiments. All tests use problems from the set of 15386 untyped first-order
problems in the TPTP problem library [8], Version 5.2.0. The full test data and
the version of the prover used for the test runs are archived at http://www.

eprover.eu/E-eu/FPIndexing.html. All tests were run with a time limit of
300 seconds on 2.4 GHz Intel Xeon CPUs under the Linux 2.6.18-164.el5 SMP
Kernel in 64 bit mode.

We have instrumented the prover by adding profiling code to measure the
time spent in parts of the program without the overhead of a standard profiler.
For quantitative analysis of the run times, we only use cases where the proof
search followed very similar lines for the indexed and non-indexed case (as evi-
denced by clause counts). This resulted in 5824 problems used for comparison.

Index Run time Sat time PM time PMI time MGU time BR time BRI time

NoIdx 16062.392 14078.300 8980.320 0.000 2545.080 2280.250 0.000
FP0 16644.127 14835.130 9904.120 26.380 4360.330 1846.280 41.440
FP0FP 9581.606 8211.010 3633.590 27.950 1322.530 1071.210 42.030
FP1 7006.758 6145.870 1816.100 25.710 450.760 379.570 40.150
FP2 6200.043 5556.330 1345.440 28.900 199.600 104.340 43.300
FP3D 6107.780 5463.240 1266.820 31.410 150.880 91.430 46.040
FP4M 6050.617 5423.820 1197.720 33.640 109.870 64.740 49.620
FP5M 6088.364 5455.180 1203.240 38.250 107.860 65.630 53.520
FP6M 6000.177 5385.810 1181.710 38.240 99.110 39.010 55.660
FP7 6022.196 5404.150 1179.250 41.880 95.880 38.400 57.610
FP8X2 6066.482 5429.390 1193.820 56.430 88.580 37.710 77.400
NPDT 6082.246 5434.760 1184.750 64.910 83.110 33.200 79.910

Table 1. CPU times for different parts of the proof process (in seconds)

We include results for a number of different versions: NoIdx (no indexing),
FP0 (pseudo-fingerprint of lengths 0), FP0FP (pseudo-fingerprint emulating op-
timizations in the unindexed version), FP1 (sampling at ε, equivalent to top-
symbol hashing, FP2 (ε, 1), FP3D (ε, 1, 1.1), FP4M (ε, 1, 2, 1.1), FP5M (
ε, 1, 2, 3, 1.1), FP6M (ε, 1, 2, 3, 1.1, 1.2), FP7 (ε, 1, 2, 1.1, 1.2, 2.1, 2.2), FP8X2 (ε,
1, 2, 3, 4, 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 1.1.1, 2.1.1), NPDT (non-perfect
discrimination trees).

Table 1 shows the result of the time measurements, summed over all 5824
problems. “Run time” is the total run time of the prover. “Sat time” is spent
in the main saturation loop, “PM time” is for paramodulation/superposition,
“PMI time” is for paramodulation index maintenance. “MGU time” is the time
for unification. “BR time” and “BRI time” are the times used for backwards-
rewriting and backward-rewrite index maintenance.

Comparing the unindexed version with the FP6M index, total run time de-
creases by more than 60%. The time spent for unification itself has been reduced
by a factor of about 25. The total time for unification-related code (i.e. index
maintenance and unification) amounts to less than 2.5% of the total run time.

Comparing the times for FP6M with the times for discrimination tree in-
dexing, we see that overall fingerprint indexing outperforms discrimination tree
indexing, if not by a large margin. Time for actual unification is slightly lower for
discrimination tree indexing, but index maintenance is slightly more expensive.

We see an even stronger improvement for backwards rewriting. The time for
the operation itself drops more than 58-fold. Time for index maintenance is of
the same order of magnitude. Taking index maintenance into account, the total
time for backward rewriting improved by a factor of about 25.

Figure 3(a) shows a scatter plot of run times for NoIdx and FP6M. Please
note the double logarithmic scale. For the vast majority of problems, the in-
dexed version is significantly, and often dramatically, faster, while there are no
problems for which the conventional version is more than marginally faster. Fig-
ure 3(b) compares FP6M and discrimination tree indexing. For most problems,
performance is nearly identical.

 1

 10

 100

 1 10 100

Fi
ng

er
pr

in
t I

nd
ex

in
g

Discrimination Trees

 1

 10

 100

 1 10 100

Fi
ng

er
pr

in
t I

nd
ex

in
g

Conventional

Fig. 3. Scatter plots of run times (in seconds) for FP6M over (a) non-indexed and (b)
non-perfect discrimination tree implementations

6 Conclusion

In this paper, we have introduced fingerprint indexing, a lightweight indexing
technique that is easy to implement, has a small memory footprint, and shows
excellent performance in practice.

In the future, we will further investigate the influence of different fingerprint
functions, and evaluate if further gains can be made by automatically generating
a good fingerprint function based on the signature.

Acknowledgements: I thank the University of Miami’s Center for Computational

Science HPC team for making their cluster available for the experimental evaluation.

References

1. Graf, P.: Term Indexing, LNAI, vol. 1053. Springer (1995)
2. McCune, W.: Experiments with Discrimination-Tree Indexing and Path Indexing

for Term Retrieval. Journal of Automated Reasoning 9(2), 147–167 (1992)
3. Riazanov, A., Voronkov, A.: The Design and Implementation of VAMPIRE. Journal

of AI Communications 15(2/3), 91–110 (2002)
4. Riazanov, A., Voronkov, A.: Efficient Instance Retrieval With Standard and Rela-

tional Path Indexing. In: Bader, F. (ed.) Proc. of the 19th CADE, Miami. LNAI,
vol. 2741, pp. 380–396. Springer (2003)

5. Schulz, S.: E – A Brainiac Theorem Prover. Journal of AI Communications 15(2/3),
111–126 (2002)

6. Schulz, S.: Simple and Efficient Clause Subsumption with Feature Vector Index-
ing. In: Proc. of the IJCAR-2004 Workshop on Empirically Successful First-Order
Theorem Proving, Cork, Ireland (2004)

7. Stickel, M.E.: The Path-Indexing Method for Indexing Terms. Technical Note 473,
AI Center, SRI International, Menlo Park, California, USA (October 1989)

8. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

